

CONCEPTUAL DESIGN OF A ZERO-EMISSION MINILINER: METHODOLOGIES FOR MISSION IDENTIFICATION AND INITIAL SIZING

Lorenzo Trainelli

Clean Sky 2 Technology Progress March 25, 2021

- 1. Introduction
- 2. Scenario studies for electric-powered regional air transportation
- 3. Preliminary sizing of electric-powered aircraft
- 4. Wrap-up

1. Introduction

- 2. Scenario studies for electric-powered regional air transportation
- 3. Preliminary sizing of electric-powered aircraft
- 4. Wrap-up

Introduction

POLITECNICO MILANO 1863

Main topics of interest

- Aircraft Performance & Dynamics
- Aircraft Design
- Aircraft Operations
- Flight Testing
- Flight Instrumentation
- Modelling and Simulation

The *FMSlab* is a **scientific laboratory** of the Department of Aerospace Science and Technology (DAER), Politecnico di Milano

Electric-powered aviation ongoing projects

- **MAHEPA** (H2020 RIA, GA 723368)
 - Development and flight testing of two hybrid-electric powertrains
 - Technology scalability and fleet-switching scenario studies
- UNIFIER19 (Clean Sky RIA THT03, GA 864901) Design of a zero-emission 19-passenger miniliner
 - **SIENA** (Clean Sky RIA THT14, GA 101007784) Technological, operational and economic feasibility of propulsion hybridization across all categories of civil aeronautics

FMSIab's dedicated methodologies and tools for electric-powered aircraft applications

- Pure-electric (PE) / hybrid-electric (HE) fixed wing aircraft
 - Aircraft design methods and tools (HYPERION and TITAN)
 - Preliminary sizing applicable from UAV to CS-25, including H₂ power-trains
 - Introduction of novel concepts in the design framework: structural batteries, DEP, ...
 - Acoustic and chemical emission prediction (CHANCES method)
 - Airport battery-recharging and H₂ infrastructure sizing (**ARES** method)
 - Short-haul air transportation scenario studies: demand estimation and network definition (SHARONA method)
- eVTOL and other PAM (Personal Air Mobility) aircraft
 - Market studies for intercity air transportation
 - Conceptual sizing applicable across widely different configurations

Introduction

UNIFIER19 – Community Friendly Miniliner

- Clean Sky thematic project (THT03, 2019-2022) on the complete preliminary design of a near-zero-emission, 19-passenger aircraft
- **Radical approach**: fully zero-emission configuration
 - Fuel-cell driven
 - Liquid hydrogen on-board storage
- FMSIab engaged in the full design loop
 - Market studies and requirement definition
 - Conceptual design of candidate configurations
 - Preliminary design of the final configuration

- 1. Introduction
- 2. Scenario studies for electric-powered regional air transportation
- 3. Preliminary sizing of electric-powered aircraft
- 4. Wrap-up

In the MAHEPA and UNIFIER19, a focus is placed on scenario studies for future short-haul air transportation enabled by novel environmentally-friendly aircraft

- Rising interest in the exploitation of a mass of underused small airports to enhance citizens' mobility throughout Europe
- New regional transport applications enabled by electric-powered aircraft
 - **Microfeeder** service: hub-and-spoke (feeding travellers to international airports)
 - **Intercity** service: point-to-point (connecting small cities)
- Key market towards EU's Flightpath 2050 4-hour-door-to-door goal
 - Very underdeveloped / non-existing today
 - Predictions needed to define a **possible scenario** and its potential

To analyse future regional air transportation scenarios, the **SHARONA** (Short-Haul Air Route Optimal Network Assessment) methodology has been developed

- Candidate aerodrome and route preliminary analysis
- Phase 1: Potential travel demand estimation
 - Potential Demand Algorithm (PDA) to determine the potential travellers and their location

 Specialized Location and Routing Problem solution algorithm to capture the potential travel demand

- Scenario studies for decision-making
- Determination of some crucial aircraft and airport design requirements

POLITECNICO MILANO 1863

Potential travel demand estimation

- Analysis of existing 3,098 EU-27 aerodromes
 - Type: hub, secondary airport, airstrips
 - Runway surface and length
 - Geography: distribution, mutual distances
- **1,376 secondary aerodromes** with runway length over 600 m
 - 1,214 secondary airports
 - 162 airstrips
- Mutual distance: over 90% within 150 km

POLITECNICO MILANO 1863

Potential travel demand estimation

 Assessment of the competitivity of the micro-feeder or intercity routes compared to ground transportation and down-selection of potential routes to profitable ones

Route catchment area

Based on the **time advantage** with respect to land transportation

Catchment area example for the microfeeder route between Lamezia Terme and Naples, Italy

POLITECNICO MILANO 1863

Potential travel demand estimation

Intercity service: Italian scenario

- Commuter matrix from 2011 census
- Towns with over 20,000 inhabitants
- 45 case studies
 - Trip distance from 100 to 300 km
 - Cruising speed from 150 to 250 KTAS
 - Cruising altitude 4,000 ft (when possible)
 - Runway length from 600 to 1,000 m

Example: trip distance 200 km, cruising speed 200 KTAS and runway length >=800 m

POLITECNICO MILANO 1863

Potential travel demand estimation

Intercity service: Italian scenario

- Commuter matrix from 2011 census
- Towns with over 20,000 inhabitants
- Potential commuters increase with aircraft range, reaching saturation at 350 km

Potential demand example: cruising speed 200 KTAS, variable range and runway length

Optimal route network definition

Formulation: Specialized location and routing problem

- Primary goal: maximization of the total demand satisfied
- Secondary goal: minimization of the number of activated airports

Input

- Fleet of HE aircraft
- Set of hubs
- Set of secondary airports
- Potential demand estimation (route function & catchment areas)
- Time horizon (day fraction)

Solution through a Mixed Integer Linear Programming (MILP) approach

Output

- Active routes and secondary airports to be activated
- Scheduling of each aircraft

POLITECNICO MILANO 1863

Optimal route network definition

Microfeeder service: Northern Italy

- Five Hubs considered: Milano-Malpensa (MXP), Milano-Linate (LIN), Bergamo-Orio al Serio (BGY), Torino-Caselle (TRN) and Venezia-Tessera (VCE)
- 45 candidate secondary aerodromes

Number of hubs					5	
Number of secondary airports					45	
Number of airfields					54	
Number of clusters					28	
	MXP	LIN	BGY	TRN	VCE	
Potential demand (10 ³ people)	1,008	1,044	2,243	4,690	3,475	
Secondary airports share	52%	44%	45%	53%	49%	
Airfields share	48%	56%	55%	47%	51%	

Scenario configuration and potential demand assessment

Performed optimization runs

Scenario ID	Time	Fleet size		
	horizon	(min-max)		
#1	4 h (8-12)	10-120		
#2	6 h (8-14)	10-50		
#3	12 h (8-20)	10-30		
#4	24 h	10-30		

POLITECNICO MILANO 1863

Optimal route network definition

Microfeeder service: Northern Italy

• Scenario #1

Captured demand as a function of fleet size and route function tuning parameter α

Number of **activated secondary aerodromes** as a function of fleet size

- 1. Introduction
- 2. Scenario studies for electric-powered regional air transportation
- 3. Preliminary sizing of electric-powered aircraft
- 4. Wrap-up

Novel methodology dedicated to the conceptual design of **innovative airplanes**

- General, starting from mission and certification requirements
- New propulsion systems
- New configurations

Extensively applied in the MAHEPA (2017-21) and UNIFIER19 (2019-22) studies

- MAHEPA: conceptual analysis of 19-pax and 70-pax hybrid-electric (HE) aircraft
- UNIFIER19: full design loop for a hydrogen-driven 19-pax aircraft

Implemented in the HYPERION and TITAN software suites

- **HYPERION**: Preliminary sizing and sizing mission time simulation
- **TITAN**: Complete configuration initial design and performance verification

Preliminary sizing of electric-powered aircraft

POLITECNICO MILANO 1863

Modelling capabilities

- Propulsion alternatives
 - **Conventional** (reciprocating engine, turbine engine)
 - Thoroughly validated:
 from two-seater VLA to ATR72
 - **PE**: Pure battery electric
 - ICE-HE: Internal combustion
 engine hybrid-electric
 - **FC-HE**: Fuel cell hybrid-electric
 - GH2: Gaseous hydrogen tank
 - LH2: Liquid hydrogen tank

- Configuration options
 - Traditional aft tail, canard
 - Distributed Electric Propulsion (DEP), wing-tip propellers
 - Strut-braced wing
- Mission simulation
 - Time-marching simulation for sizing mission and off-design conditions
 - Multiple power & energy management strategies

Example application: 19-pax FC-HE commuter

Main requirements

- CS-23 compliant, non pressurized
- Field length: 800 m; cruising speed: 140 KTAS
- Range: 1,500 km + 100 km diversion + 45 min loiter

Technology

- Battery Specific Power: 1.670 kW/kg
- Battery Specific Energy: 0.260 kWh/kg
- PGS power density: 2.130 kW/kg
- LH2 tank (gravimetric index 61%)

Configuration

- Traditional tail aft
- DEP + tail-cone propeller

POLITECNICO MILANO 1863

Preliminary sizing of electric-powered aircraft

POLITECNICO MILANO 1863

Example application: 19-pax FC-HE commuter

Preliminary sizing

- MTOM: 7,700 kg (CS23 limit: 8,626 kg)
- Wing surface: 37.6 m² (not DEP-optimized)
- Electric motor power: 1,100 kW + 700 kW DEP
- PGS power: 600 kW

Sizing matrix plot including the effects of DEP

Preliminary sizing of electric-powered aircraft

POLITECNICO MILANO 1863

Example application: 19-pax FC-HE commuter

1200 100 800 600 EM Input Power from Batte EM Input Power from PGS Altitude 200 250 300 350 Time [min]

1200

1000

600

total heat

Time [min]

100 150 200 250

natural hea

300 350 40

Έ 800

g 1.35

1.3

1.25

1.15

0 50 100 150 200 250

Time [min]

300 350 400

4500

4000

3500

3000

2000

1000

500

≥ 250

1200 0.65 0.6 11 η_{τε} [-] 11 qe 0.55 U 0.5 0.45 200 350 100 150 250 300 Time [min] 1000 800

50 100

Sizing mission time simulation

150 200 250 300 350

Time [min]

400

- 1. Introduction
- 2. Scenario studies for electric-powered regional air transportation
- 3. Preliminary sizing of electric-powered aircraft
- 4. Wrap-up

Wrap-up

Novel methodologies devised for **electric-powered aviation** studies

- Scenario studies for future market analysis of regional air transportation
- Conceptual/preliminary design methods for innovative aircraft

Software suites

- SHARONA (Short-Haul Air Route Optimal Network Assessent)
 - Potential travel demand estimation
 - Optimal route network definition
- **HYPERION + TITAN** design tools for electric-powered aircraft
 - Preliminary sizing, sizing mission simulation
 - Configuration initial design, performance verification

Wrap-up

POLITECNICO MILANO 1863

Publications

- Scenario studies for future market analysis of regional air transportation
 - Trainelli L., Riboldi C. E. D., Rolando A., Salucci F., "Methodologies for the Initial Design Studies of an Innovative Community-Friendly Miniliner", *IOP Conference Series: Materials Science and Engineering*, **1024**, 012109: 1-8 (2021). <u>doi:10.1088/1757-</u> <u>899X/1024/1/012109</u>
 - Salucci F., Trainelli L., Bruglieri M., Riboldi C. E. D., Rolando A., "Capturing the Demand for an Electric-Powered Short-Haul Air Transportation Network", AIAA paper no. 2021-0869, AIAA SciTech Forum, January 11–15, 2021. <u>doi:10.2514/6.2021-0869</u>
- **Conceptual/preliminary design** methods for innovative aircraft
 - "A General Framework for the Preliminary Sizing of Serial Hybrid-Electric Aircraft" (to be published).
 - Trainelli L., Riboldi C. E. D., Salucci F., Rolando A., "A General Preliminary Sizing Procedure for Pure-Electric and Hybrid-Electric Airplanes", Aerospace Europe Conference (AEC 2020), Bordeaux, France, February 25-28, 2020.

POLITECNICO MILANO 1863

Thank you for your attention!

Lorenzo Trainelli

Coordinator, Flight Mechanics & Flight Systems laboratory Department of Aerospace Science and Engineering Iorenzo.trainelli@polimi.it